Videos relacionados con foveas

Informaciona

Comparte y descubre información

  • Fovea: Morro y vision canina

  • Evolucion de los primates: Fovea y septum postorbital

    Los Tarsos han desarrollado exitosas adaptaciones para el salto, la tibia y el peroné están fusionados y los dos tarsos (huesos de los pies) son alargados. Parecen un grupo intermedio entre los prosimios y los monos, lo que ha causado mucha controversia en la taxonomía de los primates. Se distribuyen exclusivamente en las islas del sudeste Asiático, Filipinas, Borneo, Sumatra, Célebes. Se sitúan sobre la Línea de Wallace, que es la franja divisoria que separa la fauna euroasiática de la australasica. Lo que significa que probablemente es más antigua que ambas, incluso 40m.a. no unidos, zarpa de aseo en el 2º y 3er dedo de cada extremidad inferior, ojos enormes, cerebros pequeños, largas extremidades inferiores. Y otras con los Simios que son: hocico seco, un embrión que toma sangre materna, ojos con fovea pequeña, capsula ocular clausurada por el septum postorbital, incisivos inferiores orientados hacia arriba.

    Ver video "Evolucion de los primates: Fovea y septum postorbital"

  • Evolucion de los antropoides: Vision tricromatica y expresiones faciales

    Se considera que los lémures (y los estrepsirrinos en general) se orientan visualmente en menor medida que los primates superiores, ya que se apoyan fundamentalmente en su sentido del olfato y en la percepción de feromonas. Tienen poco desarrollada la fóvea de la retina, que confiere una mayor agudeza visual. Se cree que el septo postorbital (cierre óseo detrás del ojo) en los primates haplorrinos estabiliza ligeramente el ojo, permitiendo la evolución de la fóvea; sólo con la barra postorbital, los lémures han sido incapaces de desarrollar la fóvea. Por ello, independientemente de su modelo de actividad (nocturno, catemeral o diurno), los lémures muestran una baja agudeza visual y una elevada sumación retiniana. Sin embargo, los lémures tienen un campo visual más amplio que los primates antropoides, debido a una pequeña diferencia en el ángulo entre ojos, como se puede ver en la tabla de la izquierda,

    Ver video "Evolucion de los antropoides: Vision tricromatica y expresiones faciales"

  • Vision periferica: Movimientos sacadicos

    La finalidad de los movimientos sacádicos puede ilustrarse mediante el ojo. Los humanos no miran una escena de forma estática por lo general. En vez de esto, los ojos se mueven, buscando partes interesantes de una escena y construyendo un mapa mental referente a ella. En el ojo humano, una razón para la existencia de las sacadas es que sólo la parte central de la retina, la fóvea, tiene una alta concentración de células fotorreceptoras sensibles al color, los conos. El resto de la retina está tapizado básicamente por bastones, células fotosensibles monocromáticas, especialmente buenas en la detección del movimiento. Por esto, la fóvea es la parte de la retina encargada de la visión en alta resolución. Moviendo el ojo de forma que pequeñas partes de la escena puedan ser advertidas con mayor resolución, se pueden optimizar los recursos del cuerpo.

    Ver video "Vision periferica: Movimientos sacadicos"

  • Vision cromatica y olfato: Nuestro mono interior

    En el fondo del ojo existen millones de células especializadas en detectar las longitudes de onda procedentes de nuestro entorno. Estas células, principalmente los conos y los bastones, recogen los diferentes elementos del espectro de luz solar y las transforman en impulsos eléctricos, que son enviados luego al cerebro a través de los nervios ópticos. Es el cerebro (concretamente la corteza visual, que se halla en el lóbulo occipital) el encargado de hacer consciente la percepción del color. Los conos se concentran en una región cercana al centro de la retina llamada fóvea. Su distribución sigue un ángulo de alrededor de 2°, medidos desde la fóvea. La cantidad de conos es de 6 millones y algunos de ellos tienen una terminación nerviosa que se dirige hacia el cerebro. Los conos son los responsables de la visión del color y se cree que hay tres tipos de conos, sensibles a los colores rojo, verde y azul, respectivamente.

    Ver video "Vision cromatica y olfato: Nuestro mono interior"

  • Percepcion del color: El cerebro nos engaña

    En el fondo del ojo existen millones de células especializadas en detectar las longitudes de onda procedentes de nuestro entorno. Estas células, principalmente los conos y los bastones, recogen los diferentes elementos del espectro de luz solar y las transforman en impulsos eléctricos, que son enviados luego al cerebro a través de los nervios ópticos. Es el cerebro (concretamente la corteza visual, que se halla en el lóbulo occipital) el encargado de hacer consciente la percepción del color. Los conos se concentran en una región cercana al centro de la retina llamada fóvea. Su distribución sigue un ángulo de alrededor de 2°, medidos desde la fóvea. La cantidad de conos es de 6 millones y algunos de ellos tienen una terminación nerviosa que se dirige hacia el cerebro. Los conos son los responsables de la visión del color y se cree que hay tres tipos de conos, sensibles a los colores rojo, verde y azul, respectivamente.

    Ver video "Percepcion del color: El cerebro nos engaña"

  • Cerebro: La ciencia de los colores

    En el fondo del ojo existen millones de células especializadas en detectar las longitudes de onda procedentes de nuestro entorno. Estas células, principalmente los conos y los bastones, recogen los diferentes elementos del espectro de luz solar y las transforman en impulsos eléctricos, que son enviados luego al cerebro a través de los nervios ópticos. Es el cerebro (concretamente la corteza visual, que se halla en el lóbulo occipital) el encargado de hacer consciente la percepción del color. Los conos se concentran en una región cercana al centro de la retina llamada fóvea. Su distribución sigue un ángulo de alrededor de 2°, medidos desde la fóvea. La cantidad de conos es de 6 millones y algunos de ellos tienen una terminación nerviosa que se dirige hacia el cerebro. Los conos son los responsables de la visión del color y se cree que hay tres tipos de conos, sensibles a los colores rojo, verde y azul, respectivamente.

    Ver video "Cerebro: La ciencia de los colores"

  • Apareamiento: Vision del color

    En el fondo del ojo existen millones de células especializadas en detectar las longitudes de onda procedentes de nuestro entorno. Estas células, principalmente los conos y los bastones, recogen los diferentes elementos del espectro de luz solar y las transforman en impulsos eléctricos, que son enviados luego al cerebro a través de los nervios ópticos. Es el cerebro (concretamente la corteza visual, que se halla en el lóbulo occipital) el encargado de hacer consciente la percepción del color. Los conos se concentran en una región cercana al centro de la retina llamada fóvea. Su distribución sigue un ángulo de alrededor de 2°, medidos desde la fóvea. La cantidad de conos es de 6 millones y algunos de ellos tienen una terminación nerviosa que se dirige hacia el cerebro. Los conos son los responsables de la visión del color y se cree que hay tres tipos de conos, sensibles a los colores rojo, verde y azul, respectivamente. Dada su forma de conexión a las terminaciones nerviosas que se dirigen al cerebro, son los responsables de la definición espacial. También son poco sensibles a la intensidad de la luz y proporcionan visión fotópica (visión a altos niveles). Los bastones se concentran en zonas alejadas de la fóvea y son los responsables de la visión escotópica (visión a bajos niveles). Los bastones comparten las terminaciones nerviosas que se dirigen al cerebro y, por consiguiente, su aporte a la definición espacial resulta poco importante. La cantidad de bastones se sitúa alrededor de 100 millones y no son sensibles al color. Los bastones son mucho más sensibles que los conos a la intensidad luminosa, por lo que aportan a la visión del color aspectos como el brillo y el tono, y son los responsables de la visión nocturna.

    Ver video "Apareamiento: Vision del color"

  • Cerebro: Seguimiento ocular

    El movimiento de los ojos normalmente se divide en fijaciones y salidas, cuando la mirada se detiene en cierta posición y cuando se mueve hacia otra posición respectivamente. Las series resultantes de las fijaciones y las salidas se llama scanpath. La mayoría de la información de los ojos de hace disponible durante la fijación, pero no durante la salida. Los uno o dos grados centrales (la fóvea) aporta la mayor parte de información; los inputs de las excentricidades más extensas (la periferia) dan menos información. Por lo tanto, la localización de las fijaciones a lo largo del scanpath muestran que puntos de información de los estímulos son procesados durante una sesión de seguimiento de ojos. De media, las fijaciones duran alrededor de 200 ms durante la lectura de textos lingüísticos y 350 ms durante la visión de una escena.

    Ver video "Cerebro: Seguimiento ocular"

  • Vision sacadica: Percepcion del movimiento

    La finalidad de los movimientos sacádicos puede ilustrarse mediante el ojo. Los humanos no miran una escena de forma estática por lo general. En vez de esto, los ojos se mueven, buscando partes interesantes de una escena y construyendo un mapa mental referente a ella. En el ojo humano, una razón para la existencia de las sacadas es que sólo la parte central de la retina, la fóvea, tiene una alta concentración de células fotorreceptoras sensibles al color, los conos. El resto de la retina está tapizado básicamente por bastones, células fotosensibles monocromáticas, especialmente buenas en la detección del movimiento. Por esto, la fóvea es la parte de la retina encargada de la visión en alta resolución. Moviendo el ojo de forma que pequeñas partes de la escena puedan ser advertidas con mayor resolución, se pueden optimizar los recursos del cuerpo. Si toda la escena fuera vista en alta resolución, el diámetro del nervio óptico sería incluso mayor que el del propio globo ocular. Por esto, un procesado de toda la escena en alta resolución requeriría además un cerebro varias veces superior al actual.
    La dinámica del movimiento sacádico da cuenta de la complejidad del mecanismo que controla el movimiento del ojo. La velocidad angular máxima que se da durante un movimiento sacádico puede ser de hasta 1000 grados/s. Una sacada típica dura entre 20 y 200 milisegundos. La duración de la sacada depende de su amplitud. Dicha amplitud es la distancia angular que el ojo necesita recorrer durante una sacada en concreto. Para amplitudes de hasta 60 grados, dicha duración varía linealmente con la amplitud. En este rango, la velocidad máxima de una sacada depende de su amplitud. En sacadas mayores de 60 grados, la velocidad máxima es constante a la máxima alcanzable por el ojo. Por esto, la duración de estas sacadas no depende linealmente de la amplitud.

    Ver video "Vision sacadica: Percepcion del movimiento"

  • Movimientos oculares sacadicos

    La finalidad de las sacadas pueden ilustrarse mediante el ojo. Los humanos no miran una escena de forma estática por lo general. En vez de esto, los ojos se mueven, buscando partes interesantes de una escena y construyendo un mapa mental referente a ella. En el ojo humano, una razón para la existencia de las sacadas es que sólo la parte central de la retina, la fóvea, tiene una alta concentración de células fotorreceptoras sensibles al color, los conos. El resto de la retina está tapizado básicamente por bastoncillos, células fotosensibles monocromáticas, especialmente buenas en la detección del movimiento. Por esto, la fóvea es la parte de la retina encargada de la visión en alta resolución.
    Moviendo el ojo de forma que pequeñas partes de la escena puedan ser advertidas con mayor resolución, se pueden optimizar los recursos del cuerpo. Si toda la escena fuera vista en alta resolución, el diámetro del nervio óptico sería incluso mayor que el del propio globo ocular. Por esto, un procesado de toda la escena en alta resolución requeriría además un cerebro varias veces superior al actual. La dinámica del movimiento sacádico da cuenta de la complejidad del mecanismo que controla el movimiento del ojo. La velocidad angular máxima que se da durante un movimiento sacádico puede ser de hasta 1000 grados/s. Una sacada típica dura entre 20 y 200 milisegundos.
    La duración de la sacada depende de su amplitud. Dicha amplitud es la distancia angular que el ojo necesita recorrer durante una sacada en concreto. Para amplitudes de hasta 60 grados, dicha duración varía linealmente con la amplitud. En este rango, la velocidad máxima de una sacada depende de su amplitud. En sacadas mayores de 60 grados, la velocidad máxima es constante a la máxima alcanzable por el ojo. Por esto, la duración de estas sacadas no depende linealmente de la amplitud.

    Ver video "Movimientos oculares sacadicos"

  • Percepcion del color: Luz y oscuridad

    Los conos son los responsables de la visión del color y se cree que hay tres tipos de conos, sensibles a los colores rojo, verde y azul, respectivamente. Dada su forma de conexión a las terminaciones nerviosas que se dirigen al cerebro, son los responsables de la definición espacial. También son poco sensibles a la intensidad de la luz y proporcionan visión fotópica (visión a altos niveles). Los bastones se concentran en zonas alejadas de la fóvea y son los responsables de la visión escotópica (visión a bajos niveles). Los bastones comparten las terminaciones nerviosas que se dirigen al cerebro y, por consiguiente, su aporte a la definición espacial resulta poco importante. La cantidad de bastones se sitúa alrededor de 100 millones y no son sensibles al color. Los bastones son mucho más sensibles que los conos a la intensidad luminosa, por lo que aportan a la visión del color aspectos como el brillo y el tono, y son los responsables de la visión nocturna.

    Ver video "Percepcion del color: Luz y oscuridad"

  • Cerebro: Errores de lectura

    El ser humano percibe su ambiente por visión con fijaciones y sacadas. Al fijar clava los ojos en un punto inmóvil y con sacadas redirige la mirada rápidamente de un punto de fijación a otro. Solamente durante las fijaciones los nervios en la retina transmiten la información que perciben por la luz. Durante una sacada esta transmisión está discontinuada; se cree que eso sirve para no procesar las imágenes nebulosas que se producen por los movimientos rápidos del ojo. El campo visual es el área donde se ven objetos mientras el ojo está enfocado en un punto.3 Se lo subdivide en las regiones fóveal (menos de 2° de excentricidad) de máxima agudeza visual, parafoveal (2°-5°) de alta agudeza visual y periferal (más de 5°) de baja agudeza visual, conforme a sus distancias de la fóvea, el centro de máxima agudeza visual.

    Ver video "Cerebro: Errores de lectura"

  • Experiencias cercanas a la muerte (ECM): Debate

    Primeramente se estableció la hipótesis de la anoxia. Esta analogía se dedujo por las similaridades entre las ECM y las G-LOC: cuando un piloto de avión de caza hace un pull-up, tirando fuertemente de los mandos para ascender, la fuerza centrífuga les empuja contra el asiento con una magnitud que es varias veces la de la gravedad, por lo que la sangre se les baja a los pies. Así, el cerebro se queda sin oxígeno y se produce lo que se llama un black-out: va desapareciendo la visión periférica, cerrándose el campo visual en un túnel hasta que, por fin, se pierde el conocimiento. Asímismo, en una situación de hipoxia cerebral, la corteza visual se desinhibe, de modo que las neuronas empiezan a dispararse anárquicamente. Dado que el 90% de las células de la retina están en la fóvea, en la región central del campo visual, la percepción que se tiene de ese disparo aleatorio es la visión de un centro más iluminado que se va ampliando según más células empiezan a descargar.

    Ver video "Experiencias cercanas a la muerte (ECM): Debate"

  • Cerebro y fuerzas G: Experiencias cercanas a la muerte

    Primeramente se estableció la hipótesis de la anoxia. Esta analogía se dedujo por las similaridades entre las ECM y las G-LOC (Gravity-induced Loss Of Consciousness): cuando un piloto de avión de caza hace un pull-up, tirando fuertemente de los mandos para ascender, la fuerza centrífuga les empuja contra el asiento con una magnitud que es varias veces la de la gravedad, por lo que la sangre se les baja a los pies. Así, el cerebro se queda sin oxígeno y se produce lo que se llama un black-out: va desapareciendo la visión periférica, cerrándose el campo visual en un túnel hasta que, por fin, se pierde el conocimiento. Así mismo, en una situación de hipoxia cerebral, la corteza visual se desinhibe, de modo que las neuronas empiezan a dispararse anárquicamente. Dado que el 90% de las células de la retina están en la fóvea, en la región central del campo visual, la percepción que se tiene de ese disparo aleatorio es la visión de un centro más iluminado que se va ampliando.

    Ver video "Cerebro y fuerzas G: Experiencias cercanas a la muerte"

Esta Pagina participa en el Programa de Afiliados de Amazon EU y Amazon Services LLC, un programa de publicidad para afiliados diseñado para ofrecer a sitios web un modo de obtener comisiones por publicidad, publicitando e incluyendo enlaces a Amazon.es y Amazon.com

Utilizando el siguiente enlace podrás encontrar una página en la que se muestra la política de privacidad de esta web. Puedes usar el siguiente enlace para ver nuestras normas de uso. Si encuentras algún contenido inadecuado, puedes denunciarlo utilizando el siguiente enlace. Haciendo click en el siguiente enlace puedes ver el Aviso Legal de este sitio web.

Utilizamos cookies para medir y analizar el tráfico de este sitio web. Más información.